4th European Symposium on Fire Safety Science

Journal of Physics: Conference Series 2885 (2024) 012108

Evaluation of GPU-based Conductive Heat Transfer
Algorithms

Daniele Déhle!, Kristian Bérger! and Lukas Arnold!:?

! Computational Civil Engineering, University of Wuppertal, Germany
2 Institut for Advanced Simulation, Forschungszentrum Jiilich, Germany

E-mail: daniele.doehle@gmx.de, boerger@uni-wuppertal.de, 1l.arnold@fz-juelich.de /
arnold@uni-wuppertal.de

Abstract. The one-dimensional heat transfer algorithm of the Fire Dynamics Simulator (FDS)
is currently implemented to run on a CPU (Central Processing Unit). This study explores the
potential advantages of adapting the algorithm for Graphics Processing Units (GPUs), which
could offer significant computational benefits.

The motivation behind this work stems from the intention to speed up numerical fire
simulations. Up to now, simplifications with regard to grid resolution and level of detail have
been made, compromising accuracy for quicker results. Simulations, especially for heat transfer
in solid objects such as walls, require computationally intensive resources. By leveraging the
GPUSs’ superior parallel processing capabilities, it is possible to conduct faster and more accurate
simulations, avoiding these compromises.

Both a CPU and a GPU algorithm for computing the 1D heat transfer are developed, and
the computation time is compared against each other. Both implementations are validated
against a simple FDS simulation with identical boundary conditions. The investigations show
that the GPU algorithm is promising above a certain number of wall elements, depending on
the employed hardware. The results show that this is generally the case from 2048 elements.

1. Introduction

Conductive heat transfer in solids is part of many phenomena relevant for fire safety science.
This includes for example thermal stress on building elements or the prediction of thermal
decomposition of solids (pyrolysis). The interaction of the solid and gas phase occurs mainly
via convection and thermal radiation at the interface.

With the increased interest in enhancing the level of detail in fire simulations, especially in
the pyrolysis modelling, the computing time for numerically solving the conductive heat transfer
is rising. Relevant CFD (computational fluid dynamics) software, like FDS (Fire Dynamics
Simulator), run exclusively on CPUs (Central Processing Unit). However, modern computers
are generally equipped with GPUs (Graphics Processing Unit), which can be utilised to speed
up the computations. Within this contribution, we introduce an implementation of a conductive
heat transfer solver for a GPU, based on the current numerical implementation in FDS (see the
Technical Reference Guide [1], version 6.8.0). We investigate three different memory handling
approaches, using exactly the same numerical scheme as FDS to allow for a rigid runtime
comparison. The implementation is written in the script language Rust, while the GPU code
uses WGSL and Vulcan as a backend, see reference implementation [2].

10P Publishing
doi:10.1088/1742-6596/2885/1/012108

Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOL.

Published under licence by IOP Publishing Ltd 1

https://creativecommons.org/licenses/by/4.0/

4th European Symposium on Fire Safety Science

Journal of Physics: Conference Series 2885 (2024) 012108

The goal here is to evaluate the speed-up and efficiency of the GPU implementation and
provide insights for implementations in full CFD software. The implementation used in this
demonstrative work is computing only the solid phase and uses the gas phase information
provided by an accompanying FDS simulation. From this, values of the heat transfer coeflicient
hy, the radiative heat flux to the wall (L’é in and the temperature of the adjacent gas cell T;‘“
are extracted for the solid phase boundary conditions. Furthermore, the FDS simulation is used
to verify the solution of the implementation.

2. Principle of Heat Transfer

The underlying conductive heat transfer through a solid is given by equation (1), which describes
the solid temperature T at a point x in the Cartesian coordinate system at a given time t. The
heat transfer depends on the density ps, the specific heat capacity cs and the thermal conductivity
ks. The boundary conditions for this equation are given by the heat flux from radiation and
convection at the solid surface. Additional volume heat sources ¢!’ can be considered as well.
Following the FDS implementation, the Crank-Nicolson scheme is used to discretise the equation,

see equation (2).

ps-Cs- %T: = % <k : %f) +a’ (1)
(ps.cs)i.Tsrffl_T;}i: 1 (,+1.M—k,_1-w>
Atg 2 Ax; St Awi-k% St 3 A]}i_%
1 T - T Tt L,
+ 2 Az; (s+l T@—k% — ks,i—% : Axl_;> +4¢5 (2)

The 2D surface of a wall is divided into a grid. Each grid element is assigned a 1D wall
element with thickness w and material, which is divided into cells according to Figure 1. The
number of cells depends on the material properties ps, ¢s and ks. The cells are denser at the
edges than in the centre to better resolve steep temperature gradients [3]. The heat transfer can
be calculated on the discretised wall element. Values from the solid cells are indexed with ; and
for gas cells with 4, ; stands for the front side.

Ts, 1 Ts, 10
5.0 T 11
gas gas
cell TS, 2 Ts, 3 Ts, 4 Ts, 5 Ts, 6 Ts, 7 Ts, 8 Ts, 9 cell
o Azy Azy Azy Azg Az Az, Azg Azg
Aml + + + + + + + A'wllo
Az, w Az,

Figure 1. Structure of the 1D wall element with variable cell size

If the temperature difference between adjacent cells is too large, the numerical scheme
becomes unstable due to the Courant-Friedrichs-Lewy condition. To counteract this, the time
interval At is reduced. To do this, the maximum temperature difference AT, .. between the
cells is calculated using the equation (3). Finally, Atsnew is calculated using the equation (4)
and the algorithm is repeated S times.

At " I " — Tn__
ATsnmax _ ax S ki+l . s,i4-1 St k’i,l L s s,i—1 (3)
’ i=LN | (ps - ¢s); - Ay 2 AaziJr% 2 Ami7%

10P Publishing
doi:10.1088/1742-6596/2885/1/012108

4th European Symposium on Fire Safety Science

10P Publishing

Journal of Physics: Conference Series 2885 (2024) 012108 doi:10.1088/1742-6596/2885/1/012108
At AT log (1)
Atgnew = —— ith = 72 S = <4 4
smew = g v TTTI0K log (2) | = @)

The heat transfer can be solved using a tridiagonal matrix according to equation (5), where
the required values are determined according to equation (6). The Thomas algorithm is used for
efficient calculation. The resulting surface temperature is calculated according to equation (7).

d1 al 0 s 0 TsT,LiH C1
b, d; a; . T;L;rl = C;
0 -+ 0 by-1 dn— T;}K,{l cN-1
ki_;,_l : Ats,new ki_l ' Ats,new
ai = 2 b,l = 2
2 (pscs); - Ax; - Ach% 2 (pscs); - Aw; - AacF%

¢i =T —ai (T;f,i+1 - Tg,i) + bi (TST,l,i - Tg,i—l)

1

dizl—ai—bl— (6)

qin,f
key _ 1pntl o n . (7m s Bl oAl e 0\t
11 Az 2"%,f s,% 11 gf Tg,f + Qrin,f +3e0 - TS 1
n+l _ 2 n 2
TS £ == 3 : s,1 3 (7)
ke 1 130+l n kf 1 17 n+1 m
Az, + ihg,f — 2e0 Ts i Azy + ihgyf — 20 TS 1
2 2 2 2
rfac2¢ qdxky

3. Setup of the Simulations

Figure 2 shows a schematic visualisation of the simulation setup. A volume
of 0.30m x 0.25m x 0.25m is created with an isotropic mesh spacing of
0.05m. The boundary conditions of the box are set to adiabatic. The
box is separated in the centre by a 0.10 m thick wall. Two simulation of
identical geometry are conducted for the materials concrete and steel on
the dividing wall. The values of these material properties are taken from
the respective building standards [4] [5]. The material properties affect not
only the heat flux but also the number of cells in a wall element, which can
be taken from the table 1. For validation purposes, 6000s are simulated
while 200s are sufficient for the benchmarks.

Table 1. Number of solid cells needed for different thicknesses of materials.

Thickness [m] | 0.05 | 0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 5.00
Concrete [cells] | 12 14 16 19 | 21 23 | 26
Steel [cells] | 6 8 10 | 13 | 15 | 16 | 19

4. Implementation
The implementation of the algorithm is illustrated in Figure 3, while the

M solid surface
[200 °C surface
[adiabatic surface

© measuring points
Figure 2. Model

of the diabatic
FDS simulation.

actual calculation is implemented identically on CPU and GPU. In the context of the GPU,
the algorithm is executed as a shader, which is a program that has been explicitly compiled
and optimised for the GPU [6]. There are various shader types that can access different GPU
functions. However, only compute shaders are relevant for calculating the heat transport.

4th European Symposium on Fire Safety Science IOP Publishing
Journal of Physics: Conference Series 2885 (2024) 012108 doi:10.1088/1742-6596/2885/1/012108

setup simulation

finished
""""""" for data per
1 CPU — GPU buffer @—' calculate g7’ ., g7 |
L I a I e 1 time step
e 1) I s
| calculate At .., S calculate T4+, T q—b: GPU buffer — CPU
! ! b [o _rubuner— el h
hed
repeat o calculate rfac2 f, £ e @
rfac2 b, qdxk f, qdxk b | | calculate T;
| benchmark

Figure 3. Flowchart of the implemented heat transfer algorithm.

(a) The FDS setup file is read and used to set up the simulation.

(b) The ”*_devc.csv” file is read and the heat transfer is calculated for each time step, the
values read out are hg ¢, hgp, Tg”;fﬂ, Tgrff;l, Grin,g a0d Grin b-

Calculation of the values q'i’;l’f and q'i';l’b on the CPU.

If executed for the GPU, the required data is written to a GPU buffer.

Calculation of the reduced time interval Atsnew and the number of repetitions S.

Repeat the heat transfer algorithm S times.

Populate the solution matrix according to equation (6) and solve it.
Calculation of the wall surface temperature according to equation (7).

)
)
)
)
g) Calculation of the gas interaction variables rfac2s, rfac2y,, qdxk; and qdxky,.
)
)
) If executed for the GPU, the edge temperature is copied from the GPU buffer.

Depending on the size and structure of the
simulation, the maximum number of wall elements :
that can be calculated with one dispatch command (chunic1) - (_chuni/) - (_chunkn)

CPU -
is quickly reached. Figure 4 shows how step (d) is

~

read data from '*.csv’)

implemented in Figure 3 to avoid this problem by |————— CPUS

first splitting and then overlapping computation and |} | SPY [_]_G_Py_bgffe_r __________
data transfer. Th d data is first divided int CPU >
ata transfer e read data is first divided into n lGPU buﬁerl

chunks. These are each written to a buffer associated |---c-cc--o-| = |bo-Seeeees

GPU
with the chunk. Once this has been written, the start ||CPY 8uffer| leaiculation .
command is given. Immediately afterwards, the same CPU Duter

procedure is performed with the next chunk. In the | — L 2CPU
meantime, calculations can be performed on the GPU.

This procedure is repeated for all n chunks. When the 2 CPY
GPU part of a chunk is finished and all chunks have
given the start command, the chunks are read from the
buffer. This implementation is asynchronous.

In order for the algorithm to run on the GPU, it must be written as a shader. Part of the
shader is created dynamically after the simulation file is read. For example, the materials used,
and their properties are inserted.

In a shader, it is not easy to create a 2D array whose subarrays have different lengths. For this
reason, 3 methods were investigated to work around this problem. Figure 5 shows 2 materials
(M7, M) with walls of different thicknesses (D1, D2). This results in 3 different surfaces with
different numbers of cells. The advantages and disadvantages of these methods are as follows:

Method 1: The individual cells are stored in a buffer. An array containing information
about the start and end indices is transferred. These can then be used to extract the wall
element. The advantages of this method are that the same shader can be used for each surface

Figure 4. Schematic representation
of the division of data into chunks.

4th European Symposium on Fire Safety Science IOP Publishing
Journal of Physics: Conference Series 2885 (2024) 012108 doi:10.1088/1742-6596/2885/1/012108

Method 1 Method 2 Method 3

cell count

cell count

legend
.M1+ D1 .M2+ D1 .M1+ D2
ghost cell

wall elements wall elements

Figure 5. Schematic representation of the methods analysed.

and no ghost cells are created. The disadvantages are that additional buffers have to be created
for the indices and the solution matrix, as it is not possible to use a workgroup variable.

Method 2: A separate shader is created for each surface type when the model is initialised,
and the cell sizes Ax; and material indices are inserted directly into a private array at
initialisation. The advantages of this method are that there is no need to pass material and
cell size through buffers. Additionally, the solution matrix lives in the workgroup address space.
The main disadvantage of this method is that running two shaders with x/2 values takes longer
than running one shader for x values.

Method 3: First the wall element with the most cells zpyay is determined. Then a 2D buffer
can be created to hold the data for all wall elements, assuming that all wall elements have
Zmax cells. A second buffer is also allocated for the actual number of cells. This means that
all cells that extend beyond the actual length are ghost cells whose values are never checked.
When dynamically generating the shader, only the maximum number of cells zpax needs to be
specified. The advantage of this method is that the same shader can be used for each surface.
The solution matrix also lives in the workgroup address space. The disadvantage of this method
is that there are ghost cells which occupy unused memory space.

5. Validation 30 : 2
To validate the created programme, the same o ggence
simulation is run as in FDS and the resulting (. reference implementation
wall temperatures are compared. The results

are largely consistent as shown in Figure 6.
The heat transfer itself was implemented
identically for CPU and GPU, so that the
results of the simulations match.

S
difference [K]

1000 2000 3000 4000 5000
6. Benchmarks time [s]

The required computation time depends Figure 6. Difference in temperature on
heavily on the hardware on which the the back side between FDS and the reference
programs are running. The operating system implementation for a concrete sample.

also has an effect. The benchmarks were run

on computers with the specified components

shown in Table 2.

Table 2. Technical details of the used computer hardware.

CPU GPU operating system
Desktop AMD Ryzen 5 3600XT | AMD Radeon 5600 XT | Linux & Windows
Laptop AMD Ryzen 7 5700U AMD Radeon RX 640 | Linux
Workstation | Intel 19-10900X NVIDIA RTX A4500 Linux & Windows

4th European Symposium on Fire Safety Science

10P Publishing

Journal of Physics: Conference Series 2885 (2024) 012108

Comparison Methods

O cpu _
5
B crPumi -
.|l B cPum2 - -
@ GPU M3 .
5 01 -
E 5 L + &=
- L] - - -
- - - . - L -
2
-
0.01| L
256 512 1024 2048 4096 8192 16384 32768
wall elements
Figure 7. Benchmark of the adiabat

simulation with concrete surface comparing
methods, using Linux running on the Desktop
hardware.

doi:10.1088/1742-6596/2885/1/012108

Comparison FDS

=
o

5(| @ cpu -
2 GPU M3
11| @ FDS 12 cores - -
w s =
®]
g 2 -
=01 -
5 - -
- L
2 - L
0.01| &
256 512 1024 2048 4096 8192 16384 32768
wall elements
Figure 8. Benchmark of the diabate

simulation with concrete surface compared
with FDS, using Linux running on the
Desktop hardware.

Figure 7 shows the influence of the different methods. With a small number of wall elements,
the CPU is significantly faster than all analysed options on the GPU. From 2048 wall elements,
all GPU algorithms are faster. Method 2 is the fastest, followed by method 3 and finally method
1. However, when multiple materials are used, method 2 falls behind, as described in the
disadvantages. For this reason, the following graphs only compare method 3.

Figure 8 shows that the FDS heat transfer simulation requires more computation time than
the created program. The opposite would imply that the implementations are not optimised
and there may be errors. This is not the case. Although an attempt has been made to eliminate
all unnecessary calculations, the longer computation time of FDS may be due to the fact that
more than just heat transfer is involved.

7. Conclusion

This study demonstrates how switching from using traditional computer processors (CPUs) to
graphics processors (GPUs) can speed up numerical fire simulations involving heat transfer
in solids. Benchmarks on various computer configurations have shown that the developed
programme generally has a positive effect on the computation time. The GPU algorithm in
method 3 is particularly promising for simulation cases involving a wall element count > 2048.
A room simulation, 8m x 8m x 4m in size, achieves this quantity with a mesh spacing of
0.125m. Adding obstructions increases the number of wall elements and thus the effectiveness.
Therefore implementing this algorithm shortens the computation time and makes it possible to
run simulations faster or perform more accurate simulations in the same time.

Acknowledgements
Some of the computations were using hardware funded by the BMBF project CoBra, with the
funding number 13N15497.

References

[1] Kevin McGrattan et al. Fire Dynamics Simulator Technical Reference Guide. 6th ed. Revision: FDS-6.8.0-
0-g886e009 April 18, 2023. NIST. por: 10.6028/NIST.SP.1018.

[2] Daniele Dohle. heat-transfer. Version v1.0.0. URL: https://github.com/XanthronWriter/heat_transfer.

[3] Kevin McGrattan et al. Fire Dynamics Simulator User’s Guide. 6th ed. Revision: FDS-6.8.0-0-g886e009
April 18, 2023. NIST. por: 10.6028/NIST.SP.1018.

[4] EN 1992-1-2. Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design.
Tech. rep. Dec. 2004.

4th European Symposium on Fire Safety Science IOP Publishing
Journal of Physics: Conference Series 2885 (2024) 012108 doi:10.1088/1742-6596/2885/1/012108

[5] EN 1993-1-2. Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design. Tech.
rep. Dec. 2005.

[6] WebGPU Shading Language. URL: https://www.w3.org/TR/2023/WD-WGSL-20231124/. (W3C Working
Draft, 24.11.2023).

